

Welcome to ElectrumSV’s documentation!

ElectrumSV is a wallet application for Bitcoin SV [https://wiki.bitcoinsv.io/index.php/Main_Page], a
peer to peer form of electronic cash. As a wallet application it allows you to track, receive and
spend bitcoin whenever you need to. But that’s just the basics, as it manages and secures
your keys it also helps you to do many other things.

Important

ElectrumSV can only be downloaded from electrumsv.io [https://electrumsv.io].

Getting started

Before you can send and receive payments, you need to first create a wallet, and then create at
least one account within it.

	How do you know you have the official software and not malware?
	Every person who had their coins stolen and was interested in investigating, identified that
they had not downloaded from our official web site, and had instead obtained malware from some
other fake site. Many swore they downloaded from the official site until their verified their
download and found it to be malware. Read more about
verifying your download.

	How do you create a wallet?
	Your wallet is a standalone container for all your bitcoin-related data. You should be able
to create as many accounts as you need within it, each account containing separated funds
much like a bank account. Read more about
creating a wallet.

	How do you create an account?
	Each account in your wallet is much like a bank account, with the funds in each separated from
the others. Read more about creating an account.

	How do you receive a payment from someone else?
	Each account has the ability to provide countless unique and private receiving addresses and
by giving a different one of these out to each person who will send you coins, allows you to
receive funds from them. Read more about
receiving a payment.

	How do you make a payment to someone else?
	By obtaining an address from another person, if you have coins in one of your accounts, you
should be able to send some or all of those coins to that address. Read more about
making a payment.

Problem solving

	Why doesn’t my hardware wallet work?
	Hardware wallet makers do not provide anywhere near enough support for their devices, and
some have a history of making breaking changes that stop them working in ElectrumSV. If your
hardware wallet does not work then this is where you should look for some pointers, whether
the device is a Trezor, a Ledger, a Keepkey or a Bitbox. Read more about
hardware wallet issues.

	How do I split my coins?
	If you have coins you have not touched since before Bitcoin SV and Bitcoin Cash split from each
other, you might want to make sure that you can send one of these without accidentally sending
the other. Read more about
coin splitting.

Building on ElectrumSV

	How can I access my wallet using the REST API?
	For most users, accessing their wallet with the user interface will be fine. But if you have
a minimal amount of development skill the availability of the REST API gives you a lot more
flexibility. The REST API allows a variety of actions among them loading multiple wallets,
accessing different accounts, obtaining payment destinations or scripts from any of the
accounts. Perhaps you want to add your own interface for your wallet or maybe automate how
you use it. Read more about the REST API.

	How would I extend ElectrumSV as a customised wallet server?
	The REST API is limited in what it can do by nature. Getting the ElectrumSV development team
to add what you want to it, is not guaranteed to happen, may not even be possible and if it was
who knows how long it would take. An alternative is to build your own “daemon application”
which is a way of extending ElectrumSV from the inside. Read more about
customised wallet servers.

	Do I have to develop against the existing public blockchains?
	ElectrumSV provides a way for developers to do offline or local development.
customised wallet servers.

The ElectrumSV project

Perhaps you are a developer who already helps out on the ElectrumSV project, or you who would like
to get involved in some way, or you are just curious about the processes and information related
to project management and development. If so, this is the information you want.

	How can you contribute?
	There are many ways that you can help the ElectrumSV project improve. If you want something
to work in a different way, you can work on making it different and offer us the changes.
If you feel the documentation could be better, you can improve it and offer us the changes.
If you want ElectrumSV or anything related to it in your native language, you can offer to
do the work to translate it. And that’s just a few of the possibilities. Read more about
contributing.

	Where is the continuous integration and how is it used?
	We use Microsoft’s Azure DevOps services for continuous integration. Microsoft provide
generous levels of free usage to open source projects hosted on Github. This is used to do
a range of activities for every change we make to the source code, from running the unit
tests against each change on each supported operating system, to creating a packaged
release for each system that can be manually tested. Read more about our use of
continuous integration.

	What is the process of releasing a new version?
	Because we generate packaged releases for every change we make, with a bit of extra work we
can generate properly prepared public releases. This involves changing the source code so
that the release has the content changes required for new version, and also publishing the
release and updating the web site to have the content changes required to offer it for
download. Read more about the release process.

Indices and tables

	Index

	Module Index

Verifying your download

Probably a dozen people have reported having their coins stolen, and any who were willing to
investigate found they had downloaded a malware version of ElectrumSV and not an official download.
More than one asserted that they had downloaded from our web site, but what they meant was that
they had downloaded from a fake web site that had stolen our design.

Downloading an executable from a web site and running it is risky, and what you are putting your
trust in, is that because you download from our official web site you are getting an executable
you can safely run. Despite this, well meaning people have downloaded from fake versions of our
web site, and paid the price for it.

It is in your best interests to verify your download is the official one. The goal of this page
is to try and show you how to do that.

What are you verifying?

You will be checking the checksum (also known as a hash) of the file you downloaded. This is a
standard algorithm that you can get lots of different software for, which will give you a series
of letters and numbers that represent the uniqueness of your file. The algorithm we use for
ElectrumSV is called SHA256 and we provide an official checksum for each file we make available.
You will be comparing that official checksum to the one generated for your file. If it is the
same, you should have the official version of that file. If it is different, you have downloaded
malware instead.

The official checksums

We do not provide the checksums on the official web site where you find our download links, because
this allows any attacker who manages to compromise the web site, to also replace the official
checksums. Additionally, if there is a fake web site that offers both download links and checksums
you should know something is fishy.

The official checksums are
available from Github [https://github.com/electrumsv/electrumsv/blob/master/build-hashes.txt],
where our open source code is located. You do not need to compare against the illustrative
screenshot below, just click on the Github link and view them there.

[image: The list SHA256 hashes for the official downloads.]

The list SHA256 hashes for the official downloads.

Verifying your download

There is no easy way to check a download. Some level of technical competence is useful, although
if you do not consider yourself technically competent and can follow instructions you should still
be able to do it. Others have managed to do it, and as we get these instructions into a more
approachable state over time, you should be able to as well.

Find your operating system below, and check out the options listed for it. Some of them may be
better than others, but some assurance that your download is legitimate is better than nothing.

Windows

Several methods of verifying your download on Windows are provided below. Any one should be good
enough, but if you are a user who primarily uses a web browser you may need to learn to use the
explorer or console.

Using the digital signatures

Thanks to the kindness of the Bitcoin Association, we now have the ability to sign our Windows
executables from version 1.3.12 and above. In theory the presence of our signature on the
executable you downloaded should be just as reliable as checking the checksum. You can check if
the executable you downloaded has our signature, and if it is present you can assume that the file
should be legitimate. Your first step is to find the executable you downloaded with the Windows
explorer. You can open the Windows explorer with the windows and e key, then locate the
directory your executable is located in.

[image: Windows explorer.]

Windows explorer.

Right click on the file, and select Properties. This should open the properties window for the
file, where you should select the Digital Signatures tab to see the signature.

[image: The digital signature.]

The digital signature.

From there click on Details and then View Certificate. You should see a certificate with
the following information for the given version.

1.3.12 and above

The certificate should be issued to Bitcoin Association for BSV, be issued by
COMODO RSA Extended Validation Code Signing CA and as of the time of writing be valid
from 10/11/2020 to 11/11/2022.

[image: The digital certificate.]

The certificate the file was signed with.

Using certutil

certutil is already present in your Windows installation already. However, it requires opening
a command prompt to run it, which might be something beyond some users. Press the Windows key and
the s key at the same time, this will open the Windows searchy thing and there you can type
cmd and then press the enter key to open a command prompt.

[image: Opening a command prompt]

Opening a command prompt.

Then you need to change the directory until you are in the same directory as the file you wish
to get a checksum for. The cd command is used for this. Then you can use the certutil command
to generate a SHA 256 checksum for that file. The syntax is
certutil --hashfile <filename> SHA256, but remember you need to replace <filename> with
the actual file name. You can see an illustration of this in the image below.

[image: The certutil checksum result]

The certutil checksum result.

If you find the ElectrumSV-1.3.12.exe entry in the
linked Github list [https://github.com/electrumsv/electrumsv/blob/master/build-hashes.txt],
you can see it matches the certutil checksum result. The case of the letters does not matter,
both lower case and upper case are equivalent. If you get a different result, and the command
complains that it cannot find the file, then the file is not in the current directory. You need
to use the cd command to change the current directory as mentioned above.

Using 7-Zip

This requires that you download the 7-Zip installer. Any of the non-standalone executables from
the 7-Zip web site [https://www.7-zip.org/download.html], should be fine. Download one and
install it. Once it is installed, you should have a handy context menu available that can give
you the SHA 256 checksum for your file. Simply select your file, open the context menu and
generate the checksum. Do not reflect on the fact that no-one in their life ever wanted to
“Share with Skype” and that they put it up the top before all the useful stuff.

[image: The 7-Zip context menu]

The 7-Zip context menu.

In this case, we selected the SHA-256 menu option for the ElectrumSV-1.3.12.exe file and
the following image shows the resulting checksum.

[image: The 7-Zip checksum result]

The 7-Zip checksum result.

If you find the ElectrumSV-1.3.12.exe entry in the
linked Github list [https://github.com/electrumsv/electrumsv/blob/master/build-hashes.txt],
you can see it matches the 7-zip checksum result. The case of the letters does not matter, both
lower case and upper case are equivalent.

MacOS

The following approaches require the user to deal with the terminal. If you are unable to work
out how to do this, remember you can always file a support request on the official
ElectrumSV issue tracker [https://github.com/electrumsv/electrumsv/issues/new/choose].

shasum

This approach requires no application installation, but it does involve you being willing to
use the terminal application. If you do not know how to locate this, start by opening the
launchpad application using it’s rocket icon in the dock.

[image: Open the launchpad application search.]

Open the launchpad application search.

You should see the screen shown below. Enter terminal and it should show you one matching
application which you should open.

[image: Search for the 'terminal' application.]

Search for the ‘terminal’ application.

Work out what directory the terminal is looking at, and change it using the cd command. In the
case shown below, the downloaded file was conveniently located in the Downloads folder and
as this should also be the case for you the required commands should be the same.
Type cd Downloads followed by shasum -a 256 <filename> where you replace <filename>
with the actual file name of your download. Shown below, the file name was
ElectrumSV-1.3.12.dmg and if you downloaded this file you also would use
shasum -a 256 ElectrumSV-1.3.12.dmg as shown.

[image: Run the 'shasum' application on your downloaded file.]

Run the ‘shasum’ application on your downloaded file.

If you find the ElectrumSV-1.3.12.dmg entry in the
linked Github list [https://github.com/electrumsv/electrumsv/blob/master/build-hashes.txt],
you can see it matches the shasum checksum result. The case of the letters does not matter,
both lower case and upper case are equivalent. If you get a different result, and the command
complains that it cannot find the file, then the file is not in the current directory. You need
to use the cd command to change the current directory as mentioned above.

GNU Privacy Guard

By installing GNU Privacy Guard (GPG) you have a way to verify that the signatures provided by
the developers for the files you download, prove those files came from those developers. This is
quite involved to do, but it might be that you are more comfortable with this approach.

Start by downloading and installing GPG from the GPGTools web site [https://gpgtools.org/].
This gives you a way to check signatures for files. The next step is to obtain the keys for the
ElectrumSV developers, and to register them with GPG. This is a little complicated so you need
to follow these steps.

Open the pubkeys folder from the official
ElectrumSV Github repository [https://github.com/electrumsv/electrumsv/tree/master/pubkeys]
in Safari. You should see two files listed, rt121212121.asc and kyuupichain.asc. For each
file perform the following key import actions.

Key import

Remember that this has to be done for all of the listed public keys in the ElectrumSV Github
folder. Once you are viewing the raw page for a key, select (press Command with a) and
copy (press Command and c) the key text.

[image: Select and copy the public key text.]

Select and copy the public key text.

As soon as you have copied the key text, the GPG application you installed will signal that it has
detected a public key was copied. You will see it’s icon in your dock jumping up and down. Click on
it to import the key.

[image: Observe the GPG icon in the dock indicating that it can act on the copied key.]

Observe the GPG icon in the dock indicating that it can act on the copied key.

The GPG application will require you to approve the import, so go ahead and do that.

[image: Approve the public key import.]

Approve the public key import.

Once the public key is imported, you will see another sheet drop down to tell you if it was
imported successfully or not. It will of course be successful.

[image: Observe the successful public key import.]

Observe the successful public key import.

You can confirm the key was imported successfully, by observing that it is now present in the list
in the GPG application.

[image: Observe the imported public key is present in your GPG application.]

Observe the imported public key is present in your GPG application.

Go ahead and import any keys you haven’t imported already, then you are all set to verify the
signature of an ElectrumSV download when you need to.

Verify a download

Let’s say you have downloaded ElectrumSV-1.3.12.dmg from the official ElectrumSV
downloads page [https://electrumsv.io/download.html]. You now need to find and download the
signature for that file, so that you can verify it was created by the ElectrumSV developers. The
signatures are located on the official ElectrumSV web site, under it’s
download folder [https://electrumsv.io/download/]. The .dmg you downloaded was for version
1.3.12 so locate the folder by that name, and look inside it. You should see the signature
file ElectrumSV-1.3.12.dmg.sig, which is what you need to download ElectrumSV-1.3.12.dmg.

[image: Confirm you have downloaded both the .dmg and the matching .dmg.sig files.]

Confirm you have downloaded both the .dmg and the matching .dmg.sig files.

Open the context menu for the ElectrumSV-1.3.12.dmg file (press Control when you click on
the file). You will see a Services sub-menu, with an additional
OpenPGP: Verify Signature of File beneath it. Click on this verify sub-menu.

[image: Open the context menu and select the OpenPGP verify entry.]

Open the context menu and select the OpenPGP verify entry.

The GPG application will verify the .dmg using the detected matching .dmg.sig file and
let you know the result.

[image: Observe the verification result.]

Observe the verification result.

As you can see the signature was verified. If you want to go through the process of trusting the
ElectrumSV keys, there is a link there you can use for next time.

Creating a wallet

From ElectrumSV 1.3 and beyond, a wallet is now a container for your accounts. This guide shows
you how to create an empty wallet with no accounts. After creating the wallet, you will of course
want to add an account to it, in order to be able to start using it.

Choosing the location and file name

The first step is to choose where to store your wallet, and what it’s file name should be.
If you choose not to store your wallet in the default location that ElectrumSV uses, it is
likely that you will quickly be able to find it again in the “Recently Opened Wallets” list
when you open it again in the future.

Start off at the wallet selection page.

[image: blah]

The wallet selection page.

You will be presented with a file dialog that lets you choose where your wallet will be stored,
and what it will be named. It defaults to the standard ElectrumSV wallet location on your
operating system. Enter a file name, and click “Save” (or press the enter key).

[image: blah]

The wallet file name dialog.

Add a mandatory password

The next step is setting a password for your new wallet. We require a password and there is no
way to opt out, but you can always enter something like “password” or “123456” if you wish.
This is also required for hardware and watch-only wallets, where there is no key or seed word
data to encrypt.

[image: blah]

The wallet file name dialog.

Once you have entered a password, and confirmed it, the “OK” button will become enabled and you
can click it (or just press the enter key) to open the new wallet.

[image: blah]

The new wallet’s wallet window.

Congratulations, you have created a new empty wallet. It will not be usable until you have
created an account, and various parts of the user interface will indicate this.

[image: blah]

The receiving tab is disabled.

Creating an account

If you are reading this, you likely have a new wallet that has no accounts, and you want to add
one to it. We support addition of a wide variety of account types:

	A new “Standard” account. This is the equivalent of creating a new ElectrumSV seed-word
based wallet in 1.2.5 and earlier.

	A multi-signature account. Use this if you are creating a new multi-signature account, or
restoring an existing one from master public keys, seed words and so on.

	Importing from text. Use this to import your seed words, whether Electrum seed words, BIP39
seed words from another wallet, private keys, public keys, master public keys, master private
keys, and so on.

	Importing a hardware wallet. If you have an existing hardware wallet that has a seed set up on
it, then you can use this to add an account that links to it and uses it to sign. If you have
a hardware wallet that does not have a seed set up on it, you should also be able to use this
to set it up unless the device is a Ledger. Do not buy a Ledger.

This guide solely covers creating a “Standard” account.

Adding an account

In the top-left-hand corner of your wallet window, you will see the “Add Account” button.
Click it and it will open the account wizard which allows all supported types of accounts to be
created.

[image: The "Add Account" button highlighted.]

The “Add Account” button highlighted.

The account wizard offers four different types of account addition, at the time of writing.

[image: The Account Types page in the Account Wizard.]

The Account Types page in the Account Wizard.

Creating a new “Standard” Account

Double-click on the “Standard” entry to proceed. Or if you prefer to work for it, click the
“Next” button or press the enter key. You will be asked for your password so that the generated
seed words and private key data can be encrypted into your wallet. This also verifies you have
the ability to really use this wallet, and should able to add an account.

[image: The password dialog.]

The password dialog.

You will immediately see that the account has been added to your wallet. You will note that at
no point did you have to copy down your new seed words, or confirm them. You will be reminded to
back them up by the wallet, and can do so at your leisure and own risk.

[image: The new account's receiving tab.]

The new account’s receiving tab.

Backing up your seed words

The wallet window now has a notification center, which is used to remind you to deal with
important events, and point out how you can do it.

[image: The wallet's notifications indicator.]

The wallet’s notifications indicator.

The initial backup notification

Clicking the notification icon will make the new “Notifications” tab the active one and show the
initial notification about backing up your data.

[image: The initial backup notification in the wallet's notifications tab.]

The initial backup notification in the wallet’s notifications tab.

Follow the link to your secured data

If you click on the “account’s secured data” link, it will take you directly to that secured
data. But first it will need your password so it can decrypt that data for display.

[image: The password dialog.]

The password dialog.

Having entered the correct password you will see the secured data.

[image: The secured data dialog.]

The secured data dialog.

Congratulations, now write down the seed words somewhere safe. I recommend you look into
SAFEWORDS [https://coinstorage.guru/] to help you with this. You can dismiss the notification
by clicking on the “X” in it’s top right corner.

Receiving a payment

There are a number of ways in which you can receive payments to a given account in your
ElectrumSV wallet. At this time, they all involve having the other party pay to a new address
obtained from your account’s receive tab.

[image: The receiving tab in a standard account.]

The receiving tab in a standard account.

Two ways that someone can make a payment are:

	You copy the displayed address and give it out.

	The other party takes a photo of the displayed QR code and their wallet software lets them
pay to it.

Giving out an address

The oldest way to receive a payment is to give out an address from your wallet to the other party,
and then wait for them to pay you. In the future, this will not be supported, but for now it is.
The shown address is automatically replaced with another address, as the wallet detects that the
shown address was used in an incoming payment. This kind of works, but not really, to assist the
user in always giving out a new fresh previously unused address.

[image: The new address offered in the receiving tab.]

The new address offered in the receiving tab.

Important

The flaw in paying to addresses is that the other party has no way to know that the address
they get, is the one that you tried to give them. Because they look like random letters and
numbers it is possible that they can be replaced without either party knowing before it is
too late. While reports of this happening are rare, it might be worth taking precautions to
make sure this does not happen to you.

You can copy the address, paste it in an email and send it to the recipient. Paste it into a
chat application. Or get it to them in any number of possible ways.

Using a QR code

If the other party is standing there with you, you can show them the receiving tab and they
can take a photo of the QR code with their wallet. Their wallet will extract the address and
streamline the payment process. You can fill out the fields with a requested amount to also
include that in the QR code, which further streamlines the process.

[image: The QR code provided in the receiving tab.]

The QR code provided in the receiving tab.

Identifying incoming payments

In the legacy model, which is still the most common one, payments are fire and forget. The payer
constructs a transaction and broadcasts it to the blockchain. Then when your wallet gets a
notification a payment of interest has appeared in the blockchain, it retrieves that
transaction and factors it into the related account.

[image: The history tab when awaiting an incoming payment.]

The history tab when awaiting an incoming payment.

With this model, the wallet has no idea a payment is incoming until it arrives out of the blue.
A new and better model is available in the form of Paymail, but ElectrumSV does not have the
service infrastructure to support it at this time. We are however working towards it.

Making a payment

If you are reading this, you probably want to know how to make a payment. We currently only support
making payments in the following ways:

	Payment to a Bitcoin address.

	Payment to a
BIP276 [https://github.com/moneybutton/bips/blob/master/bip-0276.mediawiki] address.

	Payment to a Bitcoin script.

This guide solely covers payment to an address. It is not recommended you pay to a Bitcoin script
unless you are an expert.

Paying to yourself

At this point you should have a wallet with a standard account. You should also have an address
from another party, that you can make a payment to. However for the purpose of this guide, you
can make a payment to yourself, if you have no-one else to currently pay.

Start off on the receiving tab.

[image: Highlighted areas on the receiving tab.]

Highlighted areas on the receiving tab.

As you will be paying to yourself, copy the shown address. The best way to do this is to click on
the copy button, which will copy it to the clipboard. You will use this address as you would the
address for any other party.

Paying to an address

Ensure your wallet window is now showing the send tab. Select the “Pay to” field and paste in
the address you wish to make a payment to.

[image: Highlighted areas on the send tab.]

Highlighted areas on the send tab.

After pasting in the address, enter a nominal amount of Bitcoin SV to send, where your wallet
has sufficient funds to do so.

[image: The filled out send tab.]

The filled out send tab.

Important

If you are paying to addresses a good practice is to make what is called a pilot payment
first, where you pay a small amount you can afford to lose, before paying the larger full
amount.

Click the “Send” button to start the payment process.

[image: The password confirmation dialog.]

The password confirmation dialog.

Ensure that both the amount you are sending and the mining fee are the appropriate amounts, then
enter your password and click “OK”. The “OK” button only becomes enabled when you have entered
your password correctly. The transaction will broadcast, and you should receive a confirmation
that the payment was made.

[image: The payment sent dialog.]

The payment sent dialog.

The confusing sequence of letters and numbers is actually the ID of the transaction that contained
your payment. This can be used to look up your payment, if you were to take it and paste it into
a web site that indexes the Bitcoin SV blockchain.

The record of payment

At it’s current state of development, the wallet does not have much context about payments made.
But you can see the transactions this account is involved in, in the history tab.

[image: The highlighted payment transaction in the history tab.]

The highlighted payment transaction in the history tab.

If you had provided a description when making the payment, it would appear here in much the same
way as the existing transactions with their “ElectrumSV coin splitting: Your split coins”
descriptions.

Hardware wallet issues

Ledger

While Ledger as a company do not support Bitcoin SV as a coin on their device, users have been
able to use their Ledger devices with ElectrumSV through compatibility with the Bitcoin Cash
support.

The Ledger device reports “unverified inputs”

You go to sign your transaction and your Ledger device has a confusing series of screens talking
about “unverified inputs” and updating your device and/or software. You can simply step through
these screens and select continue. These screens will be shown below, and then a detailed
explanation of why you are seeing them will be provided.

The short version is that you can continue past these screens to signing your transaction as you
signed it before you started seeing these messages, and it will be as secure as it was then. Just
make sure you only sign it once, and if ElectrumSV asks you to resign it over and over not
recognising that you did it once, you are probably using malware. Again, see below the screens
for an explanation of this in more detail.

[image: Unverified inputs]

It should not be necessary to update your Ledger firmware and applications to deal with this.

[image: Update Ledger Live]

It should not be necessary to update ElectrumSV, although you should always be using the latest
version.

[image: Or third party software]

You can cancel the signing of the transaction if you want.

[image: The cancel option]

But if you select the “continue” option, the Ledger device will go through the normal transaction
signing process.

[image: The continue option]

As you might recall, the first step of the correct signing process is to confirm where you are
sending funds. And this is where the process is now at. You can go ahead and sign the transaction
as you would have in the past before this confusing message.

[image: Now you are past that, the real signing process begins with address confirmation.]

Why do I see this “unverified inputs” message?

A theoretical but unlikely exploit was discovered where wallet malware could direct a user to sign
a transaction several times, and extract the signed spends from each and combine them into a new
transaction which gave a large fee to miners. Trezor wrote an article about it [https://blog.trezor.io/details-of-firmware-updates-for-trezor-one-version-1-9-1-and-trezor-model-t-version-2-3-1-1eba8f60f2dd]
which you can read if you wish. You see this warning because ElectrumSV is not providing the
previous transactions in which the spent coins were originally received to the Ledger device.

The simple reason we do not provide the previous transaction data is because Ledger cannot handle
it and will break. You can see in the Trezor hardware issues a “DataError: bytes overflow” error,
which their users may encounter. We have to provide these transactions to the Trezor devices but
they cannot handle them and they break, this means that Trezor users have to be careful not to
spend anything other than the simplest of received payments in their transactions themselves and
work out what they can and can’t spend themseves. If any of their coins is not simple and cannot
be handled by Trezor, they need to bypass their hardware wallet and spend them in an unsafe way
by entering their seed words.

Back to Ledger devices. Ledger allow the transaction to be signed without the spent transaction
data, and on detecting they do not have it, they show an “unverified inputs” message. This makes
it a little lot for Ledger users. They can still sign a spend they are confident is going to the
correct places, and not bypass their hardware wallet to do so. Let’s be honest, if someone is going
to all the effort of writing malware it has never in the history of malware been to give the stolen
coins to miners. The chances of downloading malware are slight, and the chances of downloading
malware that gives coins to anyone other than the thief are even slighter.

Trezor

While Trezor as a company do not support Bitcoin SV as a coin on their device, generally Bitcoin SV
users have been able to use their Trezor devices with ElectrumSV by having it in the Bitcoin Cash
coin mode. However, users are encountering situations where the limitations of the Trezor device
result in it no longer being sufficient to work with Bitcoin SV transactions. This likely means
that if a user is planning to continue to use a Trezor device, it may require them to jump through
hoops to do so.

There are two complications:

	Later versions of firmware (starting with 1.9.1 for One and 2.3.1 for Model T) require ElectrumSV
to pass in parent transactions with the transaction you are signing. ElectrumSV only started
supporting this in ElectrumSV 1.3.8 or newer. What this means is that if you are using these
later versions of firmware, you must be using ElectrumSV 1.3.8 or newer - or it will error.

	Bitcoin SV transactions can have large output scripts, larger than what Trezor can handle.
Trezor can only sign simple payments and nothing else, but this does not prevent payments from
being made into the wallet with additional output scripts added for other reasons that exceed
Trezor’s size limit of 15 kilobytes. The parent transaction processing in the Trezor device will
error when it encounters these.

Trezor devices are becoming problematic for Bitcoin SV users to use. While they are polished and
enjoyable devices to use, unless the large output problem is solved by Trezor, we cannot
recommend users buy these devices unless they accept they have to own and deal with these problems.
For this reason it is recommended that Trezor users downgrade their devices.

Downgrading your Trezor device

These are Trezor’s firmware version pages, for users who plan to downgrade:

	Trezor One: 1.9.0 [https://github.com/trezor/webwallet-data/blob/master/firmware/1/trezor-1.9.0.bin].

	Trezor Model T: 2.3.0 [https://github.com/trezor/webwallet-data/blob/master/firmware/2/trezor-2.3.0.bin].

You will need to visit those pages and download the firmware file. Trezor
provide instructions [https://wiki.trezor.io/Firmware_downgrade] on how to downgrade, and
let you know how and where to use the file.

Problem: You see a random looking series of numbers and letters

[image: What this problem looks like..]

What this problem looks like..

You are using ElectrumSV 1.3.7 or earlier, and your Trezor device has a later version of the
firmware. It expects ElectrumSV to have provided the transaction associated with those numbers
and letters, but the ElectrumSV version you are using does not know how to or even that it should.
You can take the risk of updating to a more recent version of ElectrumSV that supports these
parent transactions, and possibly encounter the “DataError: bytes overflow” problem. Or you can
downgrade your Trezor firmware to the version listed above.

Problem: You see the message “DataError: bytes overflow”

[image: What this problem looks like..]

What this problem looks like..

One of your parent transactions contains not only the coin you are trying to spend, but a large
output script. Your Trezor device has a later version of firmware where parent transactions are
required to be provided, and the device is choking on the large output. This is a limit in the
device itself, and ElectrumSV can do nothing about this. To spend the coin associated with the
problem parent transaction, you need to downgrade your firmware to the versions listed above.

Coin splitting

Important

ElectrumSV can only be downloaded from electrumsv.io [https://electrumsv.io].

When users have coins that existed before Bitcoin Cash became a separate blockchain from Bitcoin
SV, those coins are linked on both blockchains. When they are sent in a wallet on one blockchain,
that action can also send them on the other blockchain. Users have had this accidentally happen
to them, and the recipient has refused to refund the coins from the blockchain the user did not
intend to send on.

If you think you have unsplit coins in your wallet, you can use ElectrumSV’s coin-splitting
feature to split them. But keep in mind that you are responsible for your own coins, you should
verify for yourself that the splitting worked. And if you are unsure whether your coins need
to be split, you can always split them anyway.

How does splitting work?

The process is simple, if the coins are sent on Bitcoin SV in a way that is incompatible with
Bitcoin Cash, then the coins are split. Any usage of those specific coins that have been split
will from then on be independent on either blockchain.

In order to keep it simple, we only do the simplest case. We make your wallet do a payment
to itself that combines all the available coins within it in a way that should be valid on
Bitcoin SV and not Bitcoin Cash. This results in one single split coin combining all the individual
coins that you had in your wallet before the split.

How you split your coins

Unfortunately, all the coins in the wallet used here are already split. So the following is just
going through the process to show you how it works. You can see that this wallet contains a
small amount of Bitcoin SV.

Let’s start by changing to the coin-splitting tab:

[image: Selecting the coin-splitting tab.]

Selecting the coin-splitting tab.

Once you are looking at the coin-splitting tab, you have two options. Either direct splitting
or faucet splitting. We recommend the direct splitting, and do not really support the faucet
splitting any more. Direct splitting does not work for hardware wallets, which due to inherent
limitations can only work in simple ways.

[image: The coin-splitting tab.]

The coin-splitting tab.

Clicking on the direct splitting button will ask you for your password. You will see that the
balance of the splitting transaction is the balance of the available coins in the wallet.

[image: Approve the splitting payment.]

Approve the splitting payment.

After you enter your password, it will sign and broadcast your transaction. This will happen
pretty quickly, and once it is done you will see a dialog letting you know the splitting
transaction was broadcast.

[image: The split action completion message.]

The split action completion message.

You can now go back to the history tab and see the splitting transaction there, which has an
automatic description noting what it was created for.

[image: The history tab with the splitting transaction.]

The history tab with the splitting transaction.

In theory, your coins should be split. But again, you are responsible for using them safely
and you should ensure that they are really split.

Ensuring your coins are split

Bitcoin is complicated, and in order to really know for yourself that your coins are split, you
need to have some level of technical understanding. It’s a lot simpler to just send them to
different places on both blockchains, especially safe places like your own wallet’s receiving
addresses and check that they get there - so just do that!

Here is one way to do it:

	Do a direct split in ElectrumSV.

	Open your Bitcoin Cash wallet with the coins that were linked to Bitcoin SV, that you just
split in ElectrumSV.

	Create a new empty Bitcoin Cash wallet.

	Send the coins in your existing Bitcoin Cash wallet to the new Bitcoin Cash wallet.

You can then observe that your Bitcoin Cash is in a new fresh wallet, and your Bitcoin SV is
in the old wallet. Neither moved because the other moved, but rather both were moved by you. You
might wonder why you need to create a second Bitcoin Cash wallet, and the reason is that this
ensures that your Bitcoin SV and Bitcoin Cash are using different keys and it both helps
verify they are unlinked and gives you better security going forward.

Hardware wallets

Hardware wallets are extremely limited devices with not much flexibility. They only allow certain
types of transactions to be signed, and this does not include the type that the direct splitting
method uses.

If you have a hardware wallet, you can try and use faucet splitting. Faucet splitting works by
adding a very small Bitcoin SV coin to your wallet, then combining all the available coins in
your wallet with that Bitcoin SV coin. This creates a new Bitcoin SV coin which is of course
incompatible with the Bitcoin Cash blockchain, and so the coins in the wallet have been split.

Alternatively, if the faucet is not working you can get someone to send you a very small amount
of Bitcoin SV and you can accomplish the same thing yourself by sending all the coins in your
wallet to one of your own addresses (including that very small amount of Bitcoin SV).

Increasing differences between blockchains

There are an increasing number of changes between Bitcoin Cash and Bitcoin SV. While it is
good practice to split your coins just in case you lose your Bitcoin SV when sending your
Bitcoin Cash, or lose your Bitcoin Cash when sending your Bitcoin SV, it is possibly becoming
easier to avoid it.

High minimum fee on Bitcoin Cash

The Bitcoin Cash servers for the Electron Cash wallet rejected any attempt to broadcast a
transaction containing unsplit coins that had 0.5 satoshis per byte fee as too low. Experiments
suggest that it is very difficult to get a transaction at this fee level to propagate, maybe
nearing impossible.

As the default fee in ElectrumSV is 0.5 satoshis per byte, this could mean that if you send
unsplit coins in ElectrumSV the Bitcoin Cash network will completely ignore them. Should you rely
on this? No, but it might provide a coincidental safety net for people who do not know they
should split their coins.

Schnorr signatures

By default Electron Cash and likely all Bitcoin Cash wallets now use Schnorr signatures. What
this means is that the transactions they make should be incompatible with Bitcoin SV as long as
the user has not opted out of using Schnorr. So in theory you can just send your coins on
Bitcoin Cash and because those Schnorr signatures are used, the coins on Bitcoin Cash have been
sent in a way that is incompatible with Bitcoin SV.

[image: The default Electron Cash Schnorr setting.]

The default Electron Cash Schnorr setting.

Should you rely on this? Not unless you know for sure that you are using Schnorr signatures
in your Bitcoin Cash wallet, and that you have used the correctly.

Thanks

Many thanks to satoshi.io [https://satoshi.io/] who provided unsplit coins used for testing
related to this article.

The REST API

Technically, the restapi is an example ‘dapp’ (daemon application). But is nevertheless
provided in a format that aims to eventually cover the majority of basic use cases.

This RESTAPI may be subject to slight changes but the example dapp source code is there for users to modify
to suit your own specific needs.

Endpoints

get_all_wallets

Get a list of all available wallets

	Method

	GET

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets

Sample Response

{
 "wallets": [
 "worker1.sqlite"
]
}

get_parent_wallet

Get a high-level information about the parent wallet and accounts (within the parent wallet).

	Method

	GET

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite

Sample Response

{
 "parent_wallet": "worker1.sqlite",
 "accounts": {
 "1": {
 "wallet_type": "Standard account",
 "default_script_type": "P2PKH",
 "is_wallet_ready": true
 }
 }
}

load_wallet

Load the wallet on the daemon (i.e. subscribe to ElectrumX for active keys)
and initiate synchronization. Returns a high-level information about the
parent wallet and accounts.

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite

Sample Response

{
 "parent_wallet": "worker1.sqlite",
 "accounts": {
 "1": {
 "wallet_type": "Standard account",
 "default_script_type": "P2PKH",
 "is_wallet_ready": true
 }
 }
}

get_account

Get high-level information about a given account

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1

Sample Response

{
 "1": {
 "wallet_type": "Standard account",
 "default_script_type": "P2PKH",
 "is_wallet_ready": true
 }
}

get_coin_state

Get the count of cleared, settled and matured coins.

	Method

	GET

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/utxos/coin_state

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/utxos/coin_state

Sample Response

{
 "cleared_coins": 11,
 "settled_coins": 700,
 "unmatured_coins": 0
}

get_utxos

Get a list of all utxos.

	Method

	GET

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/utxos

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/utxos

Sample Response

{
 "utxos": [
 {
 "value": 20000,
 "script_pubkey": "76a91485324d225c81d414fe8a92bf101dba1a59211e8488ac",
 "script_type": 2,
 "tx_hash": "ce7c2fbc25d25d945b4ad539d2b41ead29e1b786a8aa42b2677af28da3f231a0",
 "out_index": 49,
 "keyinstance_id": 13,
 "address": "msfERZdhGaabQmeQ1ks8sHYdCDtxnTfL2z",
 "is_coinbase": false,
 "flags": 0
 },
 {
 "value": 20000,
 "script_pubkey": "76a91488471d45666dadece7f06aca22f1a1cf9a3a534988ac",
 "script_type": 2,
 "tx_hash": "ce7c2fbc25d25d945b4ad539d2b41ead29e1b786a8aa42b2677af28da3f231a0",
 "out_index": 50,
 "keyinstance_id": 12,
 "address": "mswXPFgWJbgvyxkWBFfYjbbaD1DZmFS3ig",
 "is_coinbase": false,
 "flags": 0
 },
]
}

get_balance

Get account balance (confirmed, unconfirmed, unmatured) in satoshis.

	Method

	GET

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/balance

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/utxos/balance

Sample Response

{
 "confirmed_balance": 14999694400,
 "unconfirmed_balance": 98000,
 "unmatured_balance": 0
}

remove

Removes transactions (currently restricted to ‘StateSigned’ transactions.)

Deleting transactions in the ‘Dispatched’, ‘Cleared’, ‘Settled’ states
could cause issues with the utxo set and so is not supported at this
time (a DisabledFeatureError will be returned). If you require this feature,
please make contact via the Atlantis Slack or the MetanetICU slack.

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs

Sample Body Payload

{
 "txids": [
 "96eee07f8e2c96e33d457138496958d912042ff4ed7b3b9c74a2b810fa5c3750",
 "469ddc27b8ef3b386bf7451aebce64edfe22d836ad51076c7a82d78f8b4f4cf9",
 "e81472f9bbf2dc2c7dcc64c1f84b91b6214599d9c79e63be96dcda74dcb8103d"
]
}

Sample Response

{
 "items": [
 {
 "id": "96eee07f8e2c96e33d457138496958d912042ff4ed7b3b9c74a2b810fa5c3750",
 "result": 200
 },
 {
 "id": "469ddc27b8ef3b386bf7451aebce64edfe22d836ad51076c7a82d78f8b4f4cf9",
 "result": 400,
 "description": "DisabledFeatureError: You used this endpoint in a way that is not supported for safety reasons. See documentation for details (https://electrumsv.readthedocs.io/)"
 },
 {
 "id": "e81472f9bbf2dc2c7dcc64c1f84b91b6214599d9c79e63be96dcda74dcb8103d",
 "result": 400,
 "description": "Transaction not found"
 }
]
}

get_transaction_history

Get transaction history. tx_flags can be specified in the request body. This is an enum representing
a bitmask for filtering transactions.

The main `TxFlags` are:

	StateCleared

	1 << 20 (received over p2p network and is unconfirmed and in the mempool)

	StateSettled

	1 << 21 (received over the p2p network and is confirmed in a block)

	StateReceived

	1 << 22 (received from another party and is unknown to the p2p network)

	StateSigned

	1 << 23 (not sent or given to anyone else, but are with-holding and consider the inputs it uses allocated)

	StateDispatched

	1 << 24 (a transaction you have given to someone else, and are considering the inputs it uses allocated)

However, there are other flags that can be set. See electrumsv/constants.py:TxFlags for details.

In the example below, (1 << 23 | 1 << 21) yields 9437184
(to filter for only StateSigned and StateCleared transactions)

An empty request body will return all transaction history for this account.
Pagination is not yet implemented.

Request

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs/history

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs/history

Sample Body Payload

{
 "tx_flags": 9437184
}

Sample Response

{
 "history": [
 {
 "txid": "64a9564588f9ebcce4ac52f4e0c8fe758b16dfd6fdb5bd8db5920da317aa15c8",
 "height": 0,
 "tx_flags": 1052720,
 "value": -10200
 },
 {
 "txid": "a6ec24243a79de1b51646d1a46ece854a8f682ff23b4d4afabaebc2bc10ef110",
 "height": 0,
 "tx_flags": 1052720,
 "value": -10200
 }
]
}

fetch_transaction

Get the raw transaction for a given hex txid (as a hex string) - must be a transaction in the wallet’s history.

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs/fetch

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs/fetch

Sample Request Payload

{
 "txid": "d45145f0c2ff87f6cfe5524d46d5ba14932363e927bd5a4af899a9b8fc0ab76f"
}

Sample Response

{
 "tx_hex": "0100000001e59dd2992ed46911bea87af1b4f7ab1edce8e038520f142d2aa219492664d993160000006b483045022100ec97e4887b5dd9bb3c1e0ebd0d5b2b3520aeda4d957de4bf0e06a920c7dd3fe802200be4c58192a7c67930518bf29b30ab49883fcc342ca4ee5815288c6f17d7b486412103ab06ed1f70de1524e34a4e36575993a70ff2c8800958045137d0cc2caf67ec91ffffffff0248260000000000001976a9143ef1b7677ea1ed53400da9719380b4d0373a1b5f88ac10270000000000001976a91403d0de941da4f897a7cd3828b4905fa64190a72f88acce000000"
}

create_tx

Create a locally signed transaction ready for broadcast. A side effect of this is that the utxos associated with the
transaction are allocated for use and so cannot be used in any other transaction.

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs/create

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs/create

Sample Request Payload
This example is of a single “OP_FALSE OP_RETURN” output with “Hello World” encoded in Hex.
The preceeding 0x0b byte represents a pushdata op code to push the next 11 bytes
onto the stack (“68656c6c6f20776f726c64”).

Additional outputs for leftover change will be created automatically.

{
 "outputs": [
 {"script_pubkey":"006a0b68656c6c6f20776f726c64", "value": 0}
],
 "password": "test"
}

Sample Response

{
 "txid": "96eee07f8e2c96e33d457138496958d912042ff4ed7b3b9c74a2b810fa5c3750",
 "rawtx": "0100000001cfdec4ce0f10c4148b44163bf6205f53e5ab31f04a57fcaaeb33ef6487e08511000000006b483045022100873bb0dabc0b053be5602ebd1bb1ce143999221317eda8835fdf96a3197b168e022037ac7ad4c5f27beee3805e581b483b418a5298a3c467872d548accdc056321cb412103bf03fd106e69b55fc2041cc862a2c1932367899de4a734ef37b8a8f056792869ffffffff0200000000000000000e006a0b68656c6c6f20776f726c64dd250000000000001976a914c6d2e09ff211db5671ea1a9a08df13703b5a06f988acd5000000"
}

broadcast

Broadcast a rawtx (created with the previous endpoint).

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs/broadcast

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs/broadcast

Sample Request Payload
This example is of a single “OP_FALSE OP_RETURN” output with “Hello World” encoded in Hex.
The preceeding 0x0b byte represents a pushdata op code to push the next 11 bytes
onto the stack (“68656c6c6f20776f726c64”).

Additional outputs for leftover change will be created automatically.

{
 "rawtx": "0100000001ab9aff89a92c011b5436a0c02eb53cf6328286e5cf5767f309cde5414f657661000000006a473044022050750ec47afa183d3c99e22bc4324c3af83115fb409f966e345f72e0bcfa780302201e5d5920e0164c26f2fee2a71b079a4c4918ec9b269df624f3fb2fd483d6dedc4121038cac099086f38c1298d745f3b67e14bc4ab29a21fab5514111c65e196d430b29ffffffff0200000000000000000e006a0b68656c6c6f20776f726c64dd250000000000001976a914ee8f1e9312200924a406e4c39a2d0685df60924988acce000000"
}

Sample Response

{
 "txid": "7ff0fcf6de91ffa71ef145e31d0bffe31467ecaa125a8db307cf9066fea55db5"
}

create_and_broadcast

Atomically creates and broadcasts a transaction. If any errors occur, the intermediate step of creating a signed
transaction will be reversed (i.e. the transaction will be deleted and the utxos freed for use).

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs/create_and_broadcast

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs/create_and_broadcast

Sample Request Payload
This example is of a single “OP_FALSE OP_RETURN” output with “Hello World” encoded in Hex.
The preceeding 0x0b byte represents a pushdata op code to push the next 11 bytes
onto the stack (“68656c6c6f20776f726c64”).

Additional outputs for leftover change will be created automatically.

{
 "outputs": [
 {"script_pubkey":"006a0b68656c6c6f20776f726c64", "value": 0}
],
 "password": "test"
}

Sample Response

{
 "txid": "469ddc27b8ef3b386bf7451aebce64edfe22d836ad51076c7a82d78f8b4f4cf9"
}

split_utxos

Creates and broadcasts a coin-splitting transaction i.e. it breaks up existing utxos into a specified number of
new utxos with the desired “split_value” (satoshis). “split_count” represents the maximum number of splitting outputs
for the transaction. “desired_utxo_count” determines when the desired utxo count has been reached (i.e. if you have
200 utxos but “desired_utxo_count” is 220 then the next coin splitting transaction will create 20 more utxos.

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/txs/split_utxos

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/txs/split_utxos

Sample Request Payload

{
 "split_value": 10000,
 "split_count": 100,
 "password": "test",
 "desired_utxo_count": 1000
}

Sample Response

{
 "txid": "42329848db94cb16379b0c8898eb2b98542fb25d9257a47663c3fac7b0f49938"
}

Regtest only endpoints

If you try to access these endpoints when not in RegTest mode you will get back a 404 error because the endpoint will
not be available.

topup_account

Tops up the RegTest wallet from the RegTest node wallet (new blocks may be generated to facilitate this process).

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/topup_account

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/topup_account

Sample Request Payload

{
 "amount": 10
}

Sample Response

{
 "txid": "8f3dfe9b9e84c1d0b6d6ead8700be4114bb2d3ca1f97e1e84c64ea944415c723"
}

generate_blocks

Tops up the RegTest wallet from the RegTest node wallet (new blocks may be generated to facilitate this process).

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/generate_blocks

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/1/generate_blocks

Sample Request Payload

{
 "nblocks": 3
}

Sample Response

{
 "txid": [
 "72d1270d0b3ad4c71d8257db8d6f880186108152534658ae6a127b616795530d"
]
}

create_new_wallet

This will create a new wallet - in this example “worker1.sqlite”. This example was produced via the electrumsv-sdk [https://github.com/electrumsv/electrumsv-sdk] which
allows a convienient method for running a RegTest node, electrumX instance (pre-configured to connect) and an
ElectrumSV instance with data-dir=G:\electrumsv_official\electrumsv1.

	Method

	POST

	Content-Type

	application/json

	Endpoint

	http://127.0.0.1:9999/v1/{network}/dapp/wallets/{wallet_name}/{account_id}/create_new_wallet

	Regtest example

	http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/create_new_wallet

Sample Request Payload

{
 "password": "test"
}

Sample Response

{
 "new_wallet": "G:\\electrumsv_official\\electrumsv1\\regtest\\wallets\\worker1.sqlite"
}

Wallet as a service

As the Bitcoin SV ecosystem matures services will become available that allow businesses to
outsource the wallet management and the services necessary for their products. There is a sizeable
advantage to this, as it allows the business to focus on the products and avoid complicated and
rather standard work that there is a benefit to outsourcing.

For the businesses that want or even need to be in control of their own wallet and infrastructure,
they can treat ElectrumSV as a common open source base, and extend it with their own
proprietary functionality. An starting point for this approach can be found in the
example application [https://github.com/electrumsv/electrumsv/tree/master/examples/applications]
on Github.

This documentation will be fleshed out as time allows.

Local or offline development

An command-line based environment is provided for local Bitcoin SV development. There is no
requirement that any developer using it needs to be online while they use it, which is fully
compatible with the very flexible ability to do offline development.

More details will be provided as polishing is completed.

How you can contribute

What are some of the ways you might contribute to ElectrumSV?

	Contributing translations.

	Contributing new features.

	Contributing bug fixes.

	Reporting problems.

Translations

Anyone wishing to contribute translations of the text in the ElectrumSV user interface, can do
so by the ElectrumSV project [https://crowdin.com/project/electrumsv] on Crowdin. Once you’ve
done entering translations let us know, and we’ll do the process of exporting the latest
data from Crowdin so that your transaction work gets used.

New features

Be aware that you should check with us before starting work on a feature you are hoping we
will accept into ElectrumSV. If we accept a new feature, we then have to maintain it and accept
the extra work involved on top of that required for support requests, current features and bug
fixes. And it may be that depending on the feature we cannot remove it later, if users become
reliant on it or have data that requires it to be present.

Bug fixes

We welcome bug fixes for existing problems, whether they are problems you encounter yourself or
ones that you see others have reported that have not already been fixed. You can find our
existing bugs [https://github.com/electrumsv/electrumsv/issues] in our issue tracker on Github.

Reporting problems

Even if you do not have the experience, skill or inclination to attempt to fix problems you
encounter, it would be appreciated if you could report them to us. And if you can take the time
to describe what you were doing when you encountered the problem, it helps us fix the problems
much more easily. You can
report bugs [https://github.com/electrumsv/electrumsv/issues/new/choose] using our template
in our issue tracker on Github.

Continuous integration

As Microsoft provide generous levels of free usage to open source projects hosted on Github
through their Azure DevOps service, ElectrumSV makes use of it for a range of purposes. Every time
changes are pushed to Github, the following tasks are run:

	Unit tests on Windows, MacOS and Linux.

	Linting.

	Type checking.

	Code coverage analysis.

	Producing releases.

While Azure DevOps will do these things against each individual commit, we have configured the
project to only do it against the latest commit.

Releases

There are two goals in having CI produce build files:

	We can use it to produce the build files we release publically.

	Members of the public can access and download build files for any build.

Using CI to produce official release files

By having CI produce the build files, this allows a developer to offload the processing work
from their own computer and carry on working on other tasks. In addition there is some security
in having the build files made within CI, where the CI obtains the source code directly from
the latest commit on Github. And on generating the build files, also produces SHA256 hashes
that can be used to validate the content at any later time.

Benefits of public build access

If a user is experiencing a bug, a developer can fix it and push the fix to Github. This will
result in an automatic build on Azure DevOps, and if it succeeds will produce build files. The
developer can point the user to the build, and although the user may not have an account with
Azure DevOps they still have enough access that they can download build artifacts like the
build files.

Release process

There are a lot of steps to releasing a new version of ElectrumSV. This document is intended to
lay out the entire proces and some of the reasoning behind it, so that any developer can jump in
and do a release if necessary. In addition, formalising the release process ensures that nothing
is accidentally left out due to any informal and casually documented process leading to an
oversight of various steps.

Initial preparation

When it is time to release a new version, the first step is to freeze the release branch in
Github and prevent introduction of any changes that introduce new functionality or change
existing functionality. This is an exercise in self restraint, rather than anything that is
done to programmatically disallow these changes to be made.

Writing an article

An initial outline of a release article is written, including the featured changes that will be
highlighted. Mostly this involves taking the last article, removing all the changes that were
included in the previous version, and putting the new version’s changes in their place using the
same format. The key goal of these articles is to illustrate these changes and help users visualise
them even if they skim through the article, and it should include screenshots at every possible
opportunity.

For each change featured in a release article:

	A link should be provided to any issue that exists in relation to that change.

	A link should be provided to every code change made to the source code in the making of the
given change.

Updating the version

The version number is increased to the new version number, and the approximate release date is
updated to be approximately what it will be when the release is made. If the release process is
protracted over many days due to the testing, and any subsequent changes they require, then the
date may be modified later.

If the last version was 1.3.6:

	Find all 1.3.6 references and replace them with the new version 1.3.7.

	Find all 1-3-6 references. These will be in links to the release article for the previous
version. The link should be replaced with the link to the new article.

Writing release notes

There are two places that changes are documented in the source code. The first is a HTML-based
summary that is accessible from the splash screen that ElectrumSV shows when it starts up. The
second is the text-based formal RELEASE-NOTES file in the top level of the source code.

The HTML-based summary is intended to be a list of user focused descriptions of the main changes
in the release. It lists the same changes as those chosen for the release article.

The RELEASE-NOTES file is intended to be developer oriented, and should attempt to list all
the changes made and included in the release.

Pre-build testing

There are two different kinds of pre-build testing, both manual and automatic. The manual tests
are primarily those which involve a user checking the user interface works as it should. The
automatic tests ensure the code is correct as it is possible for such a tool to detect, and
that when asked to perform processes the outcomes of those processes are as they should be.

User interface testing

There is a checklist of common use cases for ElectrumSV that the user interface is manually stepped
through. New accounts are created, keys and seeds are imported, invoices are paid, hardware wallets
are plugged in and out and most if not all of the menu options are used in order to ensure they
still work.

Note

TODO: Reference manual user interface testing documents.

As bugs, problems or small aspects that can be improved are identified, they are fixed and the
relevant user interfaces are retested. Along these lines, if intuitively something does not quite
seem like it is working, time is spent to work out why.

Code analysis

As a part of normal development, before code changes are committed to the Github source code
repository, developers are expected to run code quality tools. If they push the changes to
Github and they have made changes that do not meet code quality standards, then the CI process
will do those same checks and error. The changes made to both prepare the release and fix any
problems observed in the user interface should be tested by the developer.

mypy

Python is a programming language with optional typing. For users who choose to use
typing, this tool can then try and work out if the code that uses those types is buggy or
incorrect.

Running mypy on Windows, Linux or MacOS:

mypy --config-file mypy.ini --python-version 3.7

pylint

This tool checks for general code correctness and common errors, and warns the
developer if it finds any.

Running pylint on Windows, Linux or MacOS:

pylint --rcfile=.pylintrc electrum-sv electrumsv

Unit testing

The existing collection of unit tests ensure that a range of processes work correctly. This
includes how the code handles different kinds of accounts, migration of wallets from older
versions to newer versions, old Electrum seed words, new Electrum seed words, BIP39 seed
words, different key types and so on. Running these against lower level changes can often help
detect regressions or oversights made in implementing those changes.

Running the unit tests on Windows:

pytest electrumsv\tests

Running the unit tests on Linux or MacOS:

pytest electrumsv/tests

Building the release

The continuous integration (CI) service is hooked up to Github. Every time a set of changes are
pushed to Github it automatically triggers the CI to test and build those changes. Every build
results in what are called a set of artifacts, which are the executables and archives produced
as a result of that build. If the developer adds a Git tag structured in a way to designate a
release version to the changes they push, then this modifies the build process and produces an
official versioned set of build artifacts.

Tagging the latest code as a potential stable release of a 1.3.7 version:

git tag sv-1.3.7

The developer than pushes both the latest code and the tag to Github, both separately, and in that
order:

git push
git push --tags

A build is only triggered if unpushed code changes are pushed. And the build only looks for
the release tag at the start. So the developer needs to push unpushed code changes, and then the
new release tag in quick succession.

Build errors

The build runs all the tests that the developer should run before they push the final changes.
If they fail, or their development tools are out of date, this might mean that either the developer
did not run the tests correctly or that the developer needs to update their tools.

Recapping the automated tests employed:

	The unit tests.

	The functional tests.

	Pylint for style and correctness checking.

	Mypy for type checking.

If there are build errors or the build needs to be rerun, the developer needs to delete the tag
and recreate it, and push a new tag with additional code changes to trigger a new build.

Deleting the local tag for a 1.3.7 release:

git tag --delete sv-1.3.7

Deleting the remote tag for a 1.3.7 release:

git push origin --delete sv-1.3.7

Testing the build

Once a successful candidate build has been made, the build artifacts are downloaded. One
artifact is deleted, the Windows installer which is named with the -setup.exe suffix.
At this time we do not support this or test it, and in the longer term we will provide this
in the form of a Windows Store application.

The build testing is not extensive. If a build executable runs and the wallet user interface
appears, then all testing of both functionality and user interface within the pre-build
testing will represent how the build behaves.

Linux

There are no Linux builds at this time, so there is no need for testing at this stage.

Note

If a member of the community creates an AppImage build process that is of sufficient
quality, we would be willing to help them maintain it and use it in producing official Linux
builds.

MacOS

The build is downloaded to a MacOS device, and run.

The following trivial steps are tested:

	Funds are sent to the wallet on the MacOS device.

	The funds are then sent back out to an external wallet.

Windows

There are two builds on Windows, a portable build and a non-portable build. A quick recap on
the difference is that the portable build stores it’s data in a directory local to the portable
build executable. The non-portable build stores it’s data in the user’s application data
directory.

The following trivial steps are tested for the non-portable build:

	Funds are sent to the wallet on the MacOS device.

	The funds are then sent back out to an external wallet.

The non-portable build is merely started, and if the user interface appears and the wallet
selection screen can be reached, it is deemed sufficient.

Deployment

There are a range of steps to doing the deployment.

Build files

The build files are currently hosted for download on Amazon S3 storage rather than on the web
site. This was initially done in order to try and reduce the false positive flagging for Malware
that ElectrumSV gets on Windows, because of it’s use of Pyinstaller. The process of uploading these
is intended to be paranoid to ensure that the files uploaded are the actually the ones the CI
process produced.

After the build artifacts are uploaded to Amazon S3 storage, they are re-downloaded and the SHA256
hash of each is compared to those that CI produced by redownloading the build hashes from CI.

Web site

Besides reflecting the latest release, another function of the web site is that it
hosts a JSON file with signatures from at least one developer for the given release version and
date. This is used by the update checker to alert users that there is a new release. The web site
also hosts the GPG signatures from at least one developer, which need to be added before it is
generated.

Update signatures

The keys used to verify that a release has been signed by a known developer are hard-coded into
each build. This makes it difficult to add new signing developers, as users with older builds will
lack the keys for those new developers, those builds will appear illegitimate. It is probably a
good idea for the process to change sooner rather than later to prepare for working around this.

One or more of the developers can sign to announce the release of the build, and each should do
the following:

	Take the release version which might be 1.3.7.

	Take the release date which might be 2020-10-08T20:00:00.000000+13:00.

	Combine them which in this case will result in 1.3.72020-10-08T20:00:00.000000+13:00.

	Go into the signing wallet and select the signing key.

	Select the Sign/verify message menu.

	Enter the combined text.

	Click the Sign button and enter the wallet password.

	Copy the signature and place in the release.json file.

The existing release.json file is included in the web site generation content, and should be
updated and it will automatically be included in the generated web site.

GPG signatures

In addition to hashes proving the integrity of downloaded build files, there are also GPG
signatures that indicate who they came from. The public keys of the developers who might sign
the build files are in Github [https://github.com/electrumsv/electrumsv/tree/master/pubkeys]
much like the SHA256 hashes for each build file.

A sub-directory should be made within the download web site
content directory [https://github.com/electrumsv/electrumsv/tree/master/docs/website/content/download]
for the release version, and the GPG signatures for each new build file placed in there.

Generation

With GPG signatures and release version signatures in place, and also updated for the new version
and build files, the final web site can be generated and put in place on the ElectrumSV web host.
The generation instructions documented in the
web site directory [https://github.com/electrumsv/electrumsv/tree/master/docs].
Assuming that the developer has already been generating the web site in the past, the following
commands are all they need to do one final generation.

cd docs
cd website
pelican -s pelicanconf.py

Standard deployment steps need to be followed and the new uploaded html directory needs to
match the existing one in the following ways:

	The same owner using chown -R.

	The same permissions using chmod -R.

Documentation

The documentation is hosted on the Read the Docs [https://readthedocs.org/] service.
As changes are pushed to the Github repository, Read the Docs is notified and they fetch the
changes and trigger an update of the documentation. This mostly benefits users being able to
view development documentation. The deployed documentation for a given release cannot change
any time post-release development changes are made.

After the tag for the release changes is pushed to Github, a developer needs to add it to the
list of tags that Read the Docs is hosting documentation for. And then they need to make it the
default tag so that the documentation URL electrumsv.readthedocs.io goes there by default.

Github

At this point the documentation, the web site, and almost all other changes should be present in
Github. The one thing that may be missing is the SHA256 hashes for the build files, which
need to be added to the file build-hashes.txt in the source code, and pushed as well.
Beyond that they need to be merged into
the master branch [https://github.com/electrumsv/electrumsv/blob/master/build-hashes.txt],
which is the place we recommend users go to find them.

Github releases

Github has it’s own system for projects to make releases, and we do use that, but we do not
use it to release build files. It’s primary used to formally designate the release tag as
a new release, and associate it with a list of the changes in the release. The changes listed
there are taken directly from the build-hashes.txt file.

Release article publication

This should just be a matter of applying any final polish to the already prepared release article
and pressing whatever resembles the Publish button.

Announcements

The link to the release article should be posted to the following places with some additional
decorative text.

	Twitter.

	The Metanet.ICU slack.

	The Atlantistic Unwriter slack.

	Anywhere else.

Note

TODO: Guidelines to how we write the standard decorative text should be added here.

The release checklist

It is not realistic for developers to read this document when they want to make a release and
step through the description of the process. Instead, they should refer to the following checklist
and where necessary refer to the description of the process for context and further details.

Note

TODO: Formalise the above as a list of concrete steps.

Index

 _images/verifying-downloads-macos-gpg-05-keys.jpg
]

GPGToss Suppert supportBgpgtoosory SMey 2020 BOTE 9964 ACAD 1907 9700 JTCC BASE 3745 SSBE 4IAF
GrGTool Team team@spgtocisary 20002010 _85€3 a7 64 4c1 ECsF 8078 7607 s oo0o 26c N
Foger Tyir fogessyoremaiBgnsiicom 82019 CAA F276 CFAB A4FA 6053 BAAL 25°S D7FS esn 4022 NN

3013 ke s emp—

_images/verifying-downloads-macos-gpg-06-downloaded-files.jpg
=EHo=

Favourite Name

@ Arorop B Eectrumsv-1.312dmg.sig
B Eicctrumsv-1.312.dmg

> I buid-windows

A Applications » m build-macos

2 Recents

§? Documents
[Desktop.
© Downloads

® Red
® Orange
® Yellow
® Green
Blue
® Purple

& Gy

Downloads

Date Added

Today at

_images/verifying-downloads-macos-gpg-03-import.jpg
=y P T— P
SR vourcisboard
GrGTools Support wppors e o ey sl o780 37cC A% 3745 558 ALAF
wmea /| £cor 0070 7607 8705 o000 26c4 I

GPGTools Team Treomanceacoen

Cancel port

_images/verifying-downloads-macos-gpg-04-imported.jpg
GrGTools Support
GPGTool Team

3013 ks ted

supports
rogerssy

‘f)\ he ot e o sty e

500 37CE aA9E 345 S3hE 4P
e e e ccor oa7a 7607 res ouon 25c4
oo 6093 BAAL 25F5 D7F8 gEse 4022 MR

_images/creating-a-wallet-05-wallet-window-receiving-disabled.png
© ElectrumsV 1.3.1 (mainnet) - my_new_wallet
File Wallet View Tools Help

03

Add Account.

B O & |

LogViewer Network Preferences | Updates,

14 History.

0,85V =000USD +

I Trnsactons # send - Recene
No actve sccount.
[B18sv=16820UsD 3 Connected

2 Notcations |1

_images/creating-an-account-01-add-account-button.png
© ElectrumsV 13.1 (mainnet) - my_new_wallet
Ele Wellet View Tools Help

N

14 History.

The "Add Account” button

0,85V = 0.00USD ~

B O 8 |
Log Viewer Network Preferences Updates,

i Tansactons ¢ Send - Receve 7 Notfcatons ¢ |

o active account.

[B185V=18220USD &3 Connected 3

_images/creating-a-wallet-03-add-password-dialog.png
(© Create New Wallet ? X

_ Your password only encrypts your private keys and other
essential data, only your choice oflocation seaures the.
privacy of the rest of your walet data.

Viallet: my_new_waliet

i Do

Confirm Passiord: o

Passiord Strength:

_images/verifying-downloads-macos-gpg-08-check-progress.jpg
LUTCopeeLiivd

GPGServices

Verifying signature of 'ElectrumSV-1.3.12.dmg'

_images/creating-a-wallet-04-new-wallet-window.png
© ElectrumsV 1.3.1 (mainnet) - my_new_wallet
File Wallet View Tools Help

) B o

Add Accaunt tog Network Preferences Updates,
CiMstory I Transactons ¢ Send - Recewe ™ Notfcatons |1 b
" Date Description Amount Balance

0.8V =000USD~ 3 Connected

_images/verifying-downloads-macos-gpg-09-checked.jpg
GPG Services - Verification Results

ElectrumSV-1.312.dmg Untrusted signature
Roger Taylor <roger.taylor.email@gmail.com>
CAAA F276 CF4B 44FA 6093 BAAT 25F5 D7F8 BE58 4D22

‘The signature of this message is valid but untrusted. That means it has not been

tampered with. It is untrusted though, because the key has not yet been verified.
This ‘explains how to verify and sign a public key.

Show in Finder

_images/creating-an-account-04-wallet-window-notifications-indicator.png
© ElectrumsV 1.3.1 (mainnet) - my_new_vallet
Fle Vallet View Tools Hep

Add Account

S s || oy ETwmars | dsod | Lreawe | Sroowes Sies | Sore | MU
o Receiving destination |18YmdFbKIKLOBHEPHkey Tyl B

oescrpton

Recuested smount o o

Reaustopres [Never v

sove New

‘The new notification center
highlighting you have events to deal with

0.8V =000UsD~ [B185V=1800USD 3 Connected

_images/creating-an-account-05-wallet-window-notifications-tab.png
© ElectrumsV 1.3.1 (mainned) - my_new_wallet - o x

File Wallet View Tools Help
B O 8|S
rosncant Logtewe etk Prfeences | Updes,

s account Tramsactons # Send % Receie ™ Notfcatons BKeys S cons M (4[P
Backup your wallet x|kl

Vou shoud mske sre you back up your walet Fyou o access o, you may rothave,
2y way t access o recover your funds and any other mformatn t oy contain. In
e woretcase, you ay b sble o ke don and use you scccunts cecured dot,
More informaton s avalzbisbere.

Waming Account: Standerd account 2200528 1208

B0.BV=000USD~ [H1BSV=1800UD 3 Connected

_images/creating-an-account-02-account-wizard-types.png
© tectumsy

Account Types

[sonsms

£ Multi-signature

Import from text (any seed phrase, public keys, private
keys or eddresses)

=R ——

Select the way in which you want to add

2 new account from the options to the.
eft.

_static/file.png

_images/creating-an-account-03-wallet-window-receiving-tab.png
© ElectrumsV 1.3.1 (mainnet) - my_new_vallet
Fle Vallet View Tools Hep

=

S S accoum | 2y | Tt s pecee

o B - ra—
cesaton
[—
resstoors e g

sove New

@0.55V=000UsD~ [B1BV=1800USD £} Connected 3

_static/minus.png

_images/creating-an-account-07-secured-data-dialog.png
(© Secured Account Data ?

Seed type: Eectum

SeedPhase: [maze check tite depost cart trial key sauce dentist physical cute:
tree

B
Passphrase: None

Master private KeV: [yprvgs2121QH 14325V xohLEecaWW 2T 7OMDQCGZa7tAsqf 7 10M
{SZFAQGTASkUGCEMIACS

GRFYCNZDVWBIGP2cKA TG QHHDCH:
sbeCaani

FoIe)

_images/ledger-sign-01-unverified-inputs.png
. >
inputs.

_images/coin-splitting-08-schnorr-bch.png
1©) Preferences

General | FeesaMic, Transactons | Fiat

‘App-Global Options
[spend only confirmed coins.

[Enable OP_RETURN output

[0 Allow legacy pash n the Send tab.
Per-Wallet Options

Notify when receiving funds

Use change addresses.

[Use muitiple change addresses.

Sign with Schnor signatures.

_images/creating-a-wallet-01-selection-page.png
€ © Electrumsv

Select an existing wallet

Recently Opened Wallets A

17_mainnet_hardware ledger_blue
CilUsers\t12\AppData\Roaming) ElectrumS\wallets

newwallet
Ci\Users\t12\AppData\Roaming) ElectrumS\wallets

17_mainnet_hardware,_digitalbitbox. backup.1
CilUsers\t12\AppData\Roaming) ElectrumSVwallets

20200119 _multisig_Tof2
Ci\Users\t12\AppData\Roaming) ElectrumSVwallets

202005270000
Ci\Users\t12\AppData\Roaming) ElectrumS\wallets

17_mainnet_hardware_keepkey
CilUsers\t12\AppData\Roaming) ElectrumS\wallets

17_mainnet_hardware.trezor_model_t
CilUsers\t12\AppData\Roaming) ElectrumS\wallets
‘mainnet_cash

Ci\Usersit12\AppData\Roaming) ElectrumSVwallets

20200119 _multisig_2of2
Ci\Users\t12\AppData\Roaming) ElectrumSVwallets v

‘Open Other Wallet

_images/coin-splitting-04-coins-split.png
© ElectrumsV 137 (mainnet) - Yours - o x
Fle Wt Account Tools Help
A At

Trorsactons | # st | receve | 18 Notticators | Wlkers

[CoP——

I tis account contains coins that may be inked on both the Bitcin SV blockchain
nd the Bitcoin Cash blockchain, then the approaches isted below can be used to

© Information X

Your coins have now been split.
81fb273cdd8S791adcfcT4cdb43603f5250915¢90ca09Fa0201136fdaa664

The falback approach. This approach requests a very small
Foucet it amount of known Bitcon SV coins and combines it with the.
coins in this account and sends them back to this account,

B0.BV=000UD~ [B1BSV=15962USD 3 Connected a

_images/coin-splitting-05-history-tab.png
© ElectrumSV 1.3.7 (mainnet) - Yours wallet

le Wallet Account

Add Account

[CoP——

View Tools Help

LogViewer Network Preferences | Updates,

iHstory i Transactons 4 Send < Receve Notfcators SMKeys S Cons M Consoe 5 da:
S % B
" Date Description’ Amount Balance ~
/ 2020-10-190953 ElectrunSV coin splitting: Your split coins “o.00000161 0.28389578
o/ 2020-10-19.08:53 -8.00004733 ©.28389739
o 2019-06-13 16:46 +6.00005384 ©.28394472
o 2019-04-1512:46 +6.0000927 ©.28385588
o 2019-02-0807:37 +6.06016766 0.28376318
o 2019-02-0708:26 +6.06004319 ©.28365552
o 2019-02:0703:35 +6.00012264 0.28361233
o 2019-02:0703:35 +6.00012279 ©.28348969
o 2019-02-0621:24 +6.00012592 ©.2833669
o 2019-02-0522:46 +6.06040019 ©.28324098
o 2019-02-0522:45 +6.060160058 ©.28284679
o 2019-02-05 14:46 +6.06012045 ©.28268071
o/ 2019-02-0507:59 +6.00012329 ©.28256023
o 2019-02:0507:19 +6.00012777 ©.28243692
o/ 2019-02-0500:03 +6.00013131 ©.28236917
o 2019-02-04 17:29 +6.00013165 0.28217786
201902040850 “o.co013485 0.26208681
3028389578 BSV = 45.20USD > [L1BSV=15054USD £} Connected a

_images/creating-a-wallet-02-filename-dialog.png
© Enter new wale e name.
AL mi2 s Appbata 5 Rowming > BV 5 valles

Orgaise = Newfoldr

v o [seehustes

[Pr—py -

oo SRS —_—— s 17 2

s [7mant e g i e s s e

[0 deosMonte] 17 mainnethardware digtabiton sate T3P SAUTE Fie “e

1 cencan (] 7t e g o————,

11 ecram [0 17t Haare bsphoyackop it 2P SQUTEFle e

L, e s st e e
(1) 17.mainnet hardware ledger blue backup.1 10/04/2020820AM 1 File K8

e [T———————— sz saue e o

1 cens [17 mainnet_ hardware ledger blue.sqlite 27/05/2020T41PM SQUIE File. K8

et) e e o o | e e e

[sclogesin (] 1 meimnet hrdvere ez model s backup st 05020146 PM SUTE Fie

7 snet [0 it e ez modeL st sz SaLTEFle

e [I LT —— s ios.. 16

i 117 o et o e B

File pame: |

Svesstypes A ()

~ HideFldes

_images/ledger-sign-02-unverified-inputs-update.png
Update
Ledger Live

nav.xhtml

 Table of Contents

 		
 Welcome to ElectrumSV’s documentation!

_images/coin-splitting-02-coin-splitting-tab.png
© ElectrumSV 1.3.7 (mainnet) - Yours wallet

File Wallet Account

View Tools Help

ws 4 send L Recsive 7 Notficatons M Keys

I tis account contains coins that may be inked on both the Bitcin SV blockchain
and the Bitcoin Cash blockchain, then the approaches isted below can be used to
unink (aso known a5 coin-spiting) them. I no approaches are enabled or you
Wwant o take control of the process, refer to the help offered below.

The recommended approach. Ths approach wil combine the
Drect spit coins in this account into a itcoin SV orly transaction and
Send them back to this account.

The falback approach. This approach requests a very small

Foucet it amount of known Bitcon SV coins and combines it with the.
coins in this account and sends them back to this account,

0263072 BSV = 4534USD > [4TBSV=15968USD €3 Comnected

_images/ledger-sign-05-unverified-inputs-continue.png
Continue

_images/coin-splitting-03-enter-your-password.png
© ElectrumsV 1.3.7 (meinne) - Yours wallet - o x

File Wallet Account View Tools Help

Transactions # Send

© enter Password

ﬁ ter yur pasevord to proceed

Amount to be sent: 0,28389739 BSV (45.32.USD)
Mining fee:0.00004733BSV (0.01USD)

020301728V = 4532USD~ [B1BSV=15962USD 3 Connected a

_images/ledger-sign-06-review-output.png
Review >
output #1

_images/ledger-sign-03-unverified-inputs-update.png
or third party

wallet software

_images/coin-splitting-01-tab-selection.png
© ElectrumsV 137 (
Bl Wallet Account

Add Account

net) - Yours wallet

View Tools Help

[CoP——

Log Viewer
% History Transactions ¢ Send * Receive ™7 Notificaons "MKeys ¥ Coms B Consoe|
CV? [c] -

Date Description Amot Balance A
o 2019-06-13 16:46 +6.00005384 ©.28394472
o 2019-04-1512:46 +6.0000927 ©.28385588
o 2019-02-0807:37 +6.06016766 0.28376318
o 2019-02-0708:26 +6.06004319 ©.28365552
o 2019-02:0703:35 +6.00012264 0.28361233
o 2019-02:0703:35 +6.00012279 ©.28348969
o 2019-02-0621:24 +6.00012592 ©.2833669
 2019-02-0522:46 Select the coin-splitting tab +0.00040019 ©.28324098
o 2019-02-0522:45 +6.060160058 ©.28284679
o 2019-02-05 14:46 +6.06012045 ©.28268071
o/ 2019-02-0507:59 +6.00012329 ©.28256023
o 2019-02:0507:19 +6.00012777 ©.28243692
o/ 2019-02-0500:03 +6.00013131 ©.28236917
o 2019-02-04 17:29 +6.00013165 0.28217786
o/ 2019-02-04 08:50 +6.00013485 ©.28204681
o 2019-02-04 0826 “0.00301763 0.28191196
o 2019-01-2915:06 +6.00043075 ©.28582959
o 2019-01-2612:17 +6.06031883 ©.28539884.
o 2019-01-2612:03 +6.00075055 ©.28508001

2 omom. <0 aon32551 PRTYEI
80283047285V = 45.32USD > [L1BSV=15062USD £} Connected a

_images/ledger-sign-04-unverified-inputs-cancel.png

_images/making-a-payment-03-send-tab-filled-out.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet

File Wallet Account

Add Account

View

o

- o x
Tools Help
B O S
Log Viewer Network Preferences ~ Updates,
Clmstory i Transactons f Send L Recve Notfcatons ®MKeys S Cons M Consde < ConSpittng
Payto mn4GTKmBFEAY 4WArjUtyCxav6M 1dtopSs\ B

amount [0.00006075 esv] [oor usD Max

Descrpton |

[reo [ger [preven | [s
Invoices
¥l
Received Expires Requestor Description Amount Status.

8 0,00494804 BSV = 0.81 USD ¥

B 1857 = 16452USD

3 Connected

&

_images/making-a-payment-04-password-confirmation-dialog.png
(© Enter Password X

@ Eer yourpassword toproceed

Amount to send: 0.00006078 BSV (0.01USD)

Mining fee:0.00000226 BSV (0.00 USD)

_images/making-a-payment-01-receiving-tab.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet - o X
Ele Wallet Account View Tools Help

o]

Add Account LogViewer Network Preferences | Updates,

& 1 rstory Transactons ¢ Send <+ Receve % Notfcatons #MKkeys S Cons M Consoe - ConSpittng
572 Myaccont
Recevig destinton] TR EF Ay AT o 5
Descrpton \] o]
Requested smount =)
Requestexpres [Never
saverequest| | New
The address The copy button
Regquests
clw
Date Description Amount Status.

000494604 BV = 081U~ [1BSV=16452UsD (O Connected

&

_images/making-a-payment-02-send-tab-paste.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet - o X

B & @ g

Ele Wallet Account View Tools Help

Add Account Log Viewer Network Preferences Updates,
- | Civistory iTomactons 4 Send | LRecove Notfcatons HMKeys S Cons B Console - Conspiting
rarte EEl
ot | e] | o | [mex |
Descrpton []
Geor | [prevew | [send
The Pay to field [z /1 /1
Invoces
Receved | Expies Requestor Description ‘Amount Status

000494604 BV = 081U~ [1BSV=16452UsD (O Connected

&

_images/making-a-payment-05-payment-sent-dialog.png
© Information 0

Payment sent.
6446767 T5abb28eab47F13f4eD1c16082521237bd8bdc219deBecascTal3

]

_static/plus.png

_images/making-a-payment-06-history-tab.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet

Ele Wallet Account

Add Account

View Tools Help

The payment transaction

o

LogViewer Network Preferences Upda

IHstory i Transactions Send <~ Receive ™7 Notifcatons "MKeys ¥ Coms B Console - Coin Spitting
A}
~_ Date Y Amount Balance ~
/' Uncor -0.00006304 ©.004885
S oo s
o/ 2020.09.04 1238 ElectrumsV coin splitting: Your split coins “o.0000305 0.0849503¢
o/ 200.09.04 1238 ElectrumsV coin splitting: Your split coins -6.000029 o.004354
o/ 2020.09.04 1238 ElectrumsV coin splitting: Your split coins -o.00000305 0.0849553
o/ 200.09.04 1205 ElectrumsV coin splitting: Your split coins “o.00000322 0.08495995
o/ 20.09.04 1205 ElectrumsV coin splitting: Your split coins “o.c000305 0.08498318
o/ 200.09.04 1205 ElectrumsV coin splitting: Your split coins “o.0000305 0.0849862¢
o/ 20.09.04 1205 ElectrumsV coin splitting: Your split coins -6.000029 o.004693
o/ 200.09.04 1205 ElectrumsV coin splitting: Your split coins -6.000029 o.0045722
22009022026 ElectrumsV coin splitting: Your split coins -.000078¢ o0.0849751
/ 20200902202 Electrumsy coin splitting: Dust From BSV faucet +o.c800155 o.00438204
/202009002009 Electrumsy coin splitting: Dust From BSV faucet +o.c800155 o.00435744
V 20000220 +o.c800155 o.00495194
V 2009022001 +o.c800155 o.00433544
20009021628 Electrumsy coin splitting: Your split coins “o.00e00321 0.0849209¢
 220.09.02 1624 ElectrumsV coin splitting: Your spiit coins “o.c0eces04 0.08492415
o/ 2020.00.02 TH10_ElectrumsV coin splitting: Your split coins -6.0000020 o.00492719 v

0.8V =000USD ~

[B1BSV=16452USD €3 Connected lv_‘@

_images/password-dialog.png
© Enter Password

Your

wallet has 3 password, and you wil need to

account.

ﬁ provide that password in oder to seare this

Passiord:

_images/the-history-tab.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet

Ele Wallet Account

Add Account

View Tools Help

o

LogViewer Network Preferences Upda

iMstory i Transactons 4 Send < Receve Notfcatons MKeys S Cans M Consoe ¥ Conspiting
S % B
7 Date Amount Balance ~
o/ 2020-09-17 16:08 -8.00000226 ©.60494578
 2020.05-04 1238 ElectrunSV coin splitting: Your split coins ~o.0000020 ©.00434508
/202008041238 ElectrunSV coin splitting: Your split coins _o.00000306 ©.00495098
/ 2020.0-04 1238 ElectrumSV coin splitting: Your split coins ~o.0000020 0.004354
/202008041238 ElectrunSV coin splitting: Your split coins _o.00000306 ©.0043569
 2020.05-04 1205 ElectrunSV coin splitting: Your split coins ~o.00000322 ©.00495996
/ 2020-08-04 1205 ElectrunSV coin splitting: Your split coins _o.00000306 ©.00496318
 2020.05-04 1205 ElectrunSV coin splitting: Your split coins —o.00000306 ©.00496624
/ 2020-08-04 1205 ElectrunSV coin splitting: Your split coins ~o.0000020 ©.0043595
 2020.05-04 1205 ElectrunSV coin splitting: Your split coins ~o.0000020 0.0043722
202008022026 ElectrunSV coin splitting: Your split coins ~o.00000754 0.0043751
/20009022026 ElectrunsV coin splitting: Dust from BSV faucet +0.0000155 ©.00495208
/ 20009022009 Electrunsy coin splitting: Dust from BSV faucet +0.0000155 ©.00496728
o/ 2020-09-02 20:07 +6.0000155 ©.60495192.
/ 2020-09-02 20:01 +6.0000155 ©0.60493644.
202005021824 ElectrunSV coin splitting: Your split coins “o.00000321 ©.00492098
202005021824 ElectrunSV coin splitting: Your split coins _o.00000304 0.00432415
o/ 2020-06-02 1710 ElectrumSV coin splitting: Your split coins -0.0000020 0.00432719 v
83000494578 BSV = 082USD~ [1BSV=16483USD £ Connected lv_‘@

_images/trezor-01-parent-tx-unsupported.jpg
. b'\xb7\xa8\x820\xb6\xdaA5\xBbuY\xc6V\x8b\xe1\xcfixfc\xcc\x8fxdI\xe8Xwixfc\xec\xbe #R\x8b\xd2\x83"

oK

_images/receiving-a-payment-01-receiving-tab.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet
Ele Wallet Account View Tools Help

Add Account

2 History Transactons # Send - Receive ™ Notfications "M Keys

o

Log Viewer Network Preferences | Updat

S cons B Console ¥ Coin Spitting

g destnation [rgAI ARGy KT

o]

Desaription [

] — —

Requestexpres | Never

Save request New

Requests.

Q
«

Date Description

Amount Status.

8 0.00494578 BSV = 0,81 USD

9185V = 16436 USD

£ Connected L3

_images/receiving-a-payment-02-receiving-tab-qr-code.png
© ElectrumsV 136 (testnet) - 20200902-new-wallet

File Wallet Account

Add Account

View

o

Tooks Help

2 tistory.

fo IS

LogViewer Network Preferences | Updates,

Transactons # Send < Receive ¥ Notficatons #MKeys ¥ Cons B Console

g destnation [rgAI ARGy KT

o]

5 coin splting

Desaription []
-
Requestexpres [Never 5
sderequest]| | new
The requested amount /
The current QR code
Regquests
clw
Date Description Amount Status.
83000494578 BSV = 082USD~ [1BSV=16483USD £ Connected L_‘O

_images/verifying-downloads-02-7zip-context-menus.png
Name

buid-hashes

[Blctrumsy-1.3.124mg

Date modified

26/04/20219:34 AM
23/04/2021 3:22 PM

Type ;

Text Document
DMG File

@ tlectrmsy

[Hectrums
3 Hecrumsv
4 Hectrumsv
Hectrumsv:

Open

Run as administrator
Share with Skype
Troubleshoot compatiilty
Pinto Start

Move to OneDrive

7Zip

CRCSHA

Edit with Notepad-++

Scan vith Microsoft Defender.

Sign and encrypt
More GpgEX options

~

Application
GZFile

Compressed (zipp.

Compressed (zipp.
Application

cRe32
CRC-64
SHA-1
SHA-256

P

_images/verifying-downloads-03-7zip-checksum.png
Checksum information

Name BlectumSV-1.3.12exe
Sze 28172360 bytes (26 MiB)
‘SHA256 34C4DEACAAIECO786D9DIBATOFEEFAFCOF909BB3CAT 18719B03EDEDSIBATFIE

_images/trezor-02-output-script-too-big.png
NG

. DataError: bytes overflow

OK

_images/verifying-downloads-01-build-hashes.png
158 lines (158 sloc) 14.1 k8

Cea0RCOI5EFFIC37eI2TFF0255T 3 1eBacaT4 1900496 F256052c 22703992762 Electrunsy-1.
34cadeacaslec7a6090360aT0FeeFAFCRFIOILEICa110719b03ede093 01 Fle Electrunsy-1.
505d556193C7 122212477 80767 a0C FS34c FO2507029C 30056 FFeAARFA13654 Electrunsy-1.
5207433cb2c67028a312300C256348C 127 a%aFCB9F1 7bal01aB40C50295 Electrunsy-1.
29236730951767708eb7afedbecE5470617d0705 130608002446 381CE5803d1e Electrunsy-1.
©5706a2¢Feede20654adedee534 7047393002919 7620090 a7 1ddGbeSeerdeS Electrunsy-1.3.12-docs. 2ip

3.12.0m¢
3
3
3
3
3
77¢2424283257800503¢ P21 1876717 3e7ccal 308 FoO308479e2827a2e65d0e ElectrunsV-1.3.11.cng.
3
3
3
3
3
3

2.exe
12-portable.exe
2.targz
L12.z8p

577113604207 bb0 b 702F1Fa72005603ac 2043225 39209972d8CB0AI546292 Electrunsy-1.
45028570775760244361772dc 4041207 F4OF3FFOC59AdRaBITdSAeBF1807e07 Electrunsy-1.
8065cce761c2305224208723621500e 1220112367092 FdB9beb6b27 12006698 Electrunsy-1.
£970b1284137CC32c0D67 9200 3cC F447354320a516070104a22120436367aF Electrunsy-1.
202027379c4706420028174F7dacI105514ab3acE57B956¢AAIFI0eF7ca3nd Electrunsy-1.
55052529403063d0400Bbad0bAC1FIEE31622F 200749076326 1aa7F0Lb247 ElectrunsV-1.

lexe
1-portable.exe
Altargz
1.zip
11-docs. zip
10.cng

_images/verifying-downloads-05-cmd.png
Best match

[Gommems v
App

Apps

M Developer Command Prompt for VS
2019

B Nodejs command prompt

M Developer Command Prompt for VS
2019Q)

Settings (1)

Email

» 240

b

More v

Command Prompt

Open
Run as administrator
Openfile location
Unpin from taskbar

Pin to Start

_images/verifying-downloads-06-explorer.png
[ERg} Manage 31

«

Documents # A Name
5 Pictures ” 5] build-hashes txt

- a X
-0
v 4 < bl > 1312 v o £ Searchrl3.12
- Date modified Type Size

25042021 9:AM TextDocument e
[Bectrumsv-13.12:4mg 3021 32PM MG 275K
|© Hectrumsv-1312.x¢ 267042021 509AM Applcation 25138
[BectrumsV-1.3125ergz o RPM GZFie 7785K8
4 Hectrumsv-1.31220p /0 IRPM Compressed (pp 8092KB
4 HectrumsV-1.312-docsip ANSOAM Compressed (dpp 10350KB
© Eiectrumsi-1:3.12-porablecce 25/042021809AM Appliction Z51368

_images/verifying-downloads-04-certutil-command-line.png
Command Prompt

> certutil -hashfile ElectrumsV-1.3.12.exe SHA256
SHA256 hash of ElectrumsV-1.3.12.exe

3ac4deacaa3ece786d9d38ba7efeefafcofopobs3cal1b719be3edeo9sbalfle
CertUtil: -hashfile command completed successfully

>

_images/verifying-downloads-09-macos-launchpad.png

_images/verifying-downloads-10-macos-startbar-launchpad.png

_images/verifying-downloads-07-properties-digital-signature.png
ElectrumsV-1.3.12.exe Properties

Securty Detais Previous Versons
General Compatbity Digtal Signatures
Signatre st
Name of sgner. Digestalgorthm _ Timestamp
{Bitcon Associatio... shazs6, Monday, 26 Apri 202.
Detsis

_images/verifying-downloads-08-properties-certificate.png
n | Certificate

General Details Certfication Path

] cotite ot

This certificate is intended for the following purpose(s):
« Ensures software came from software publisher
«Protects software from alteration after pubication

*Refer to the certfication authority' statement for detais.

Tssued to: Bitcoin Assocation for BSV.
Tssued by: COMODO RSA Extended Valdation Code Signing
cA

Valid from 10/11/2020 to 11/11/2022

_images/verifying-downloads-macos-gpg-02-gpg-import-signal.jpg

_images/verifying-downloads-11-macos-terminal-shasum.png
[] @ Downloads — -zsh — 80x24

(rt12 ~ % 1s

Desktop Downloads Movies Pictures

Documents Library Music Public

(rt12 ~ % cd Downloads

[rt12 Downloads % 1s

ElectrumsV-1.3.12.dmg build-macos build-windows

[rt12 Downloads % shasum -a 256 ElectrumsV-1.3.12.dmg
acea@0c9356F3c37e3217Fb255731eBaca7419bd49efe56d52c22b3992f6e ElectrumsV-1.3
.12.dmg

rt12 Downloads % I

_images/verifying-downloads-macos-gpg-01-select-pubkey.jpg

